If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-69=0
a = 2; b = 5; c = -69;
Δ = b2-4ac
Δ = 52-4·2·(-69)
Δ = 577
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{577}}{2*2}=\frac{-5-\sqrt{577}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{577}}{2*2}=\frac{-5+\sqrt{577}}{4} $
| -9-8x=2x-8x | | 6-0.9x+0.05x^2=0 | | -9=8x=2x-8x | | 15=a-5.5 | | 1/2m+7=16-3/5m | | x^2-18x+120=0 | | 18x-6=10x | | 13=a-5.3 | | -2-8x=-x-5 | | X-3÷71=2x | | -36+p=-43 | | 5x-82x=7 | | 5x+45=5x+9 | | 3x2-4x/6=20x | | 28-(3x+)=2(x+6)+x | | 12=-4k+7k | | 3x-4x/6=20x | | 5x=45=5x+9 | | -4x+13-x=4(x+8) | | 2(7y-4y+y)=25 | | 1/2(4+6x)=-1/3(9x-24) | | 20=0,6q^2-8q | | 2(6x+4x)=25 | | -2+5x=2x | | 12x5=3+4x | | 1+7v+8=9 | | 3x(6x-5)=7 | | -79=7q+3(4q-1) | | χ²+32x+2148=0 | | 3n+3n=6 | | 2x+71=15 | | 04(8-0.2w)=-4 |